Abracon LLC | Why does reference clock jitter matter?

Since the inception of the serial data transceiver, reference clock jitter has been a strong consideration when designing communications links. Is it a surprise that low clock jitter has remained significant? Why does clock jitter  matter?

Many hardware engineers wonder whether there is a way to design around reference clock jitter. The importance of reference clock jitter comes down to two basic concepts—clock multiplication and transmitter PLL loop bandwidth.

In order to serialize data from a parallel path that is M bits wide into a single serial bit stream, the data must be clocked M times faster. This requires clock multiplication typically using a phase locked loop (PLL). The PLL acts like a low pass filter with respect to source phase noise. It attenuates source phase noise above the bandwidth knee and passes phase noise below its bandwidth with a 20log(M) gain. Clock phase noise below the -3dB bandwidth is effectively gained up. Clock phase noise above the -3dB bandwidth point is attenuated with a roll-off.

This fundamental relationship means that reference clock noise can never be eliminated from the transmitter output. Any serial transceiver using a PLL to generate M times higher bit rate has this property. Since there is phase noise gain below the -3dB knee of the transmitter, clock phase noise is actually amplified by a factor directly related to the ratio of the output bit rate and the reference clock frequency—20log(M) or 20log(output bit rate/clock frequency). This relationship assumes that you are comparing a clock of line rate frequency which is actually 2X the frequency of a 101010 data pattern. There is a built in factor of 2 shift when measuring the phase noise of the data compared to the line clock. Ignoring that detail for the purpose of this simplified analysis, the greater the multiple between your reference clock and the bit rate, the higher your in-band phase noise multiplication.

In today’s designs where bit rates have doubled from a few years ago, this means that your reference clock phase noise, and ultimately jitter, continues to be important. Multiplying up to line rates of 32Gbps or 56Gbps means you are gaining in-band phase clock phase noise by a factor greater than 40dB, two orders of magnitude. A reference clock without sufficiently low phase noise below the transceiver’s -3dB bandwidth will impact the output noise and could degrade bit error rate. Since bit rates are increasing, the in-band gain factor continues to increase.

Today’s trend compounds the effect because higher speed transceivers tend to also have higher -3dB PLL bandwidth. The part of the phase noise considered in-band tends to increase by a wide factor. Where it was common to design transceivers with transmitter -3dB bandwidths around 10MHz to 20MHz, this may no longer be possible. In many applications the knee has stretched beyond 80MHz. This is why some high speed IC manufacturers require reference clock jitter to be integrated up to 80MHz. They may develop a custom integration band to characterize jitter. Another common practice is to use the typical 12kHz to 20MHz band as a standard figure of merit. If the overall phase jitter is low enough throughout that band, it is assumed that it is low enough when extended to a wider range of 80MHz or 40MHz. In practice, jitter should be measured up to the full integration range of the transmitter PLL.

Reference clock jitter has become a greater design challenge. When combined, higher clock rate multiplication and wider overall transmitter PLL bandwidths compound the overall effect of clock noise on transceiver output jitter. Although the actual effect on BER can only be determined when considering the loop dynamics of the receiving side, excess phase noise will definitely show up on the output. As transceiver line rates increase reference clocks must exhibit considerably lower noise.

Written by: Juan Conchas, Director of Marketing, Abracon

About Abracon, LLC
Founded in 1992, and headquartered in Spicewood, Texas, Abracon is a leading global manufacturer of passive and electromechanical timing, synchronization, power, connectivity and RF solutions. Abracon offers a wide selection of quartz timing crystals and oscillators, MEMS oscillators, real time clocks (RTC), Bluetooth modules, ceramic resonators, SAW filters and resonators, power and RF inductors, transformers, circuit protection components and RF antennas and wireless charging coils. The company is ISO9001-2008 certified with design & application engineering resources in Texas and sales offices in Texas, California, China, Taiwan, Singapore, Scotland, Israel, Hungary, UK, and Germany. Abracon’s products are offered through its global distribution network. For more information about Abracon, visit www.abracon.com.

It’s a Femtosecond World

I fondly recall working on the first generation of 10Gigabit FPGA SERDES and struggling to accurately capture 10 picoseconds of timing jitter on high speed repetitive sampling oscilloscopes. At that time, advanced microwave transition analyzers could discern timing noise below the 1 picosecond level but that was rarely necessary. Since SERDES on those first FPGAs with high speed serial transceivers displayed a fair amount of inherent noise, clock jitter below 1psec rms was generally irrelevant.

Fast forward a decade and a half and we are in the middle of a computing power boom called the cloud. To keep up, processors’ and FPGAs’ on-chip and external interconnects must operate faster than ever. Today’s SERDES are readily driving serial rates higher than 56Gbps across multiple lanes of traffic and reaching unprecedented overall data transfer rates. Consumer’s voracious appetite for bandwidth continues increase.

While clocks with 1 picosecond of rms jitter are widely available, the industry accepts this level of performance only at very modest data rates near 1Gbps. These would be adequate for a lower tier of communications applications. For more advanced hardware that needs to connect at a minimum serial rate of 10Gbps, most hardware engineers will only accept a clock jitter much less than 1 picosecond. Most of today’s leading edge network processors, CPUs and FPGAs are well beyond those rates.

The above plot shows the progressively lower jitter performance required as serial data rates exponentially increase. The exact requirement varies by chipset and applications since each SERDES may have unique bandwidths of interest and widely differing clock rates. However, as a general rule of thumb, this curve does seem to hold. It puts us squarely between 100fs and 200fs for many of today’s 56Gbps and higher serial data rates.

For the this generation of hardware designers, picoseconds (1 in 10 to the power of 12 seconds) have succumbed to femtoseconds (1 in 10 to the power of 15 seconds). Only that low level of timing noise can produce reliably error free communication at today’s speeds. Hardware engineers wrestling with high speed design challenges should have no doubt–it’s a femtosecond world.

Written by: Juan Conchas, Director of Marketing, Abracon

Original post: https://www.linkedin.com/pulse/its-femtosecond-world-juan-conchas

About Abracon, LLC
Founded in 1992, and headquartered in Spicewood, Texas, Abracon is a leading global manufacturer of passive and electromechanical timing, synchronization, power, connectivity and RF solutions. Abracon offers a wide selection of quartz timing crystals and oscillators, MEMS oscillators, real time clocks (RTC), Bluetooth modules, ceramic resonators, SAW filters and resonators, power and RF inductors, transformers, circuit protection components and RF antennas and wireless charging coils. The company is ISO9001-2008 certified with design & application engineering resources in Texas and sales offices in Texas, California, China, Taiwan, Singapore, Scotland, Israel, Hungary, UK, and Germany. Abracon’s products are offered through its global distribution network. For more information about Abracon, visit www.abracon.com.

Top 5 Adaptations in Timing and Synchronization Enabling the IoT | Abracon LLC

Cutting edge, innovative, and exhilarating, the IoT has caught the attention of millions of businesses and consumers around the world. It’s easy to mistake the technologies of the IoT and their profitability as an overnight success; however, it would not be possible without key innovations over decades of work. At the heart of IoT technology is electronic timing. Adaptations in timing and synchronization are being pioneered to address the unique challenges that come with the IoT; these solutions are the unsung heroes that keep our data collection clean and our devices in sync. Below are the top 5 adaptations in timing and synchronization technology enabling the IoT.

1. Quartz crystals with lowest possible plating load capacitance (CL) and equivalent series resistance (ESR).

The most significant trend in IoT is conserving battery power while still boosting overall functionality. Advanced IC subsystems are continuously starved of energy, forcing them to operate with lower power consumption. The direct result of reduced power consumption is a decrease in oscillation gain margin in the Pierce oscillator with industry low gm_critical – a defining metric for strength of the oscillator circuit. gm_critical has been pushed to the lowest limits in a wide variety of IoT optimized chipsets requiring adaptations in quartz crystal technology. One significant adaptation is an ever lower CL and ESR value.

Today’s crystal has evolved to meet the lowest levels of CL combined with the lowest ESR available. Lowering both CL and ESR simultaneously leads to a crystal that is much easier to drive and is capable of being driven using a Pierce oscillator configured with a low gm_critical value. Saving the most amount of power consumption, the leading edge of crystal design is now enabling CL of 3pF or 4pF for a wide variety of frequencies. With such low CL values, designers of energy saving MCUs and RF chipsets can optimize their designs to run on lower power consumption than ever before.

2. Sub 100nA timekeeping current consumption real time clocks (RTC).

Many smart IoT devices are often deployed over a wide perimeter and are expected to operate autonomously for years without routine maintenance. For these devices, power consumption is everything. The last 50nA could mean the difference between sustained operability on a tiny coin cell or sacrificing real estate by installing a larger battery. Previous RTC technology can be up to 10X more power hungry than today’s state of the art. When the RTC in the system is the only heartbeat that remains active in deep sleep, reducing the time keeping current consumption to 22nA translates into a significant extension of battery life. Sub 100nA power consumption RTC’s keep IoT devices running in deep sleep for as long as necessary.

3. Micro-footprint MEMS oscillators.

Size is a considerable design challenge for the IoT and wearable device market. Although MEMS oscillators aren’t the lowest cost solutions and usually less efficient in terms of power consumption, they are the reigning kings of small form factor designs. Available in “chipscale” packages – the size of a single silicon die – MEMS oscillators offer output frequencies from 32.768kHz to >100MHz in miniature footprints as small as 1.5mm x 0.8mm. Micro-footprint MEMS oscillators are the ideal solution for miniaturized IoT devices.

4. Compact advanced TCXOs.

Femtocells, LoRa radios, machine to machine (M2M) devices, GPS tracking and other IoT systems rely heavily on accurate long term timing stability to synchronize their communications and avoid spectral and time division interference. Acquiring a GPS signal from a distant satellite, locking to the signal, and calculating it’s exact coordinates on the surface of the earth requires precise millisecond to millisecond timing. Base transceiver stations (BTS) and other cellular devices, now migrating to 5G, act on precise transmit windows. Blurring these time-based boundaries leads to higher bit error rate, violates standards and specifications and increases unnecessary noise and interference. Today’s compact TCXO devices achieve ±1ppm to ±0.1ppm frequency stability over temperature, ideal for many compact RF and GPS applications that are driving the IoT.

5. < 200-fs ultra-low jitter oscillators.

Without the accessibility of the cloud and the explosive growth in bandwidth capabilities, the IoT would not exist. For instance, increasing bandwidth in servers, storage systems, and network interfaces—both short and long haul—depends directly on the continuous evolution of low noise clocks. Ultra-high speed serial rates that exceed 50 gigabits per second (Gbps) require sub-200 fs (RMS) reference clock phase jitter performance. Higher phase noise would exceed the level required for low bit error rate transmission between SERDES and RF devices. Today’s generation of ultra-low noise & jitter clocks enable the exponential growth in high speed data traffic driving the cloud.

Written by: Juan Conchas, Director of Marketing, Abracon

Original post: https://www.linkedin.com/pulse/top-5-adaptations-timing-synchronization-enabling-iot-juan-conchas/

About Abracon, LLC
Founded in 1992, and headquartered in Spicewood, Texas, Abracon is a leading global manufacturer of passive and electromechanical timing, synchronization, power, connectivity and RF solutions. Abracon offers a wide selection of quartz timing crystals and oscillators, MEMS oscillators, real time clocks (RTC), Bluetooth modules, ceramic resonators, SAW filters and resonators, power and RF inductors, transformers, circuit protection components and RF antennas and wireless charging coils. The company is ISO9001-2008 certified with design & application engineering resources in Texas and sales offices in Texas, California, China, Taiwan, Singapore, Scotland, Israel, Hungary, UK, and Germany. Abracon’s products are offered through its global distribution network. For more information about Abracon, visit www.abracon.com.

Abracon announces Bernhard Maier, Regional Sales Manager for Germany, Austria, and Switzerland

AUSTIN, TX (July 11, 2017) Abracon, LLC (Abracon), a leading global manufacturer of frequency control, timing, synchronization, RF, connectivity and power components, announces Bernhard Maier, Regional Sales Manager for Germany, Austria, and Switzerland. Bernhard is responsible for sales and customer service from concept through production across all market segments within his regional responsibilities.

Bernhard started in the electronics industry with Siemens Industrial Services as a Global Field Sales Engineer and Siemens Automotive and Drives as an Advanced Procurement Engineer. His experience over 20 years in the industry has spanned procurement, engineering, supply chain, and demand creation which has further rooted trust among colleagues and customers.

“Bernhard’s tenure in the electronics industry has earned him a respected reputation amongst customers, manufacture representatives, distributors and fellow employees alike. He is well recognized and valued across all of these communities,” commented Mike White. “We anticipate that he will be quickly embraced and sought after as a trusted advisor. He is a key asset to our Abracon EMEA team as he reconnects with our loyal customers across one of the largest territories within EMEA. We are excited about his future contributions to our customers.”

Abracon’s community of hardware designers across the DACH territory will have the benefit of a highly knowledgeable and informed ally to facilitate their go to market requirements.

About Abracon, LLC
Founded in 1992, and headquartered in Spicewood, Texas, Abracon is a leading global manufacturer of passive and electromechanical timing, synchronization, power, connectivity and RF solutions. Abracon offers a wide selection of quartz timing crystals and oscillators, MEMS oscillators, real time clocks (RTC), Bluetooth modules, ceramic resonators, SAW filters and resonators, power and RF inductors, transformers, circuit protection components and RF antennas and wireless charging coils. The company is ISO9001-2008 certified with design & application engineering resources in Texas and sales offices in Texas, California, China, Taiwan, Singapore, Scotland, Israel, Hungary, UK, and Germany. Abracon’s products are offered through its global distribution network. For more information about Abracon, visit www.abracon.com.

Over Temperature Effects of Gm_critical | A Technical Review

The emergence of the IoT has accelerated the trend towards lower power consumption on many MCU and RF chipsets, pressuring IC designers to wring out every bit of energy savings in their circuits. The consequence, pertaining to the clocking scheme, is usually a weaker oscillator loop amplifier starved of transconductance (gm). The reduced power consumption has the potential to severely affect analog circuits, such as the Pierce oscillator.

The Pierce oscillator driving quartz crystals is one of the most common circuits in the electronics industry. Present in almost every microcontroller, RF chipsets, and many other IC’s, this circuit is the true workhorse of timing in almost every device developed today. As most design engineers employ negative resistance analysis to assess closed-loop dynamics, some may ignore another very significant metric – gm_critical.

As the name implies, gm_critical can be defined as the level of critical value of closed-loop transconductance mandatory to keep the amplifier in linear region, while maintaining sufficient forward gain at the desired phase shift of (n*2π). The closed-loop overall gain margin (GM) is mathematically represented as:

GM = gm / gm_critical ………. (1)

Whereas; gm = oscillator loop amplifier’s intrinsic transconductance (µA/V, or mA/V)
gm_critical = closed-loop transconductance needed to keep the amplifier in linear region with sufficient forward gain at the desired phase shift (µA/V, or mA/V)

It is a well-established industry figure of merit to target GM > 5, with minimum value of 3. With the reduction in the intrinsic gm value, it is paramount to simultaneously reduce the gm_critical needed for sustained oscillations.

It should be noted that gm_critical has significant dependence on the external resonator’s electrical characteristics at the desired resonant frequency and is outlined in equation (2).

gm_critical = 4 * ESR * (2πF)2 * (C0 + CL)2 ………… (2)

From equation (2) it is evident that any significant reduction in gm must be counter-balanced with a reduction in gm_critical to ensure that the closed-loop overall margin (GM) remains the same. For instance, consider the following example:

gm = 2.7 µA/V; GM = 5; then gm_critical = 0.54 µA/V maximum
Now, if the gm is reduced to 1.0 µA/V, to keep GM = 5; the gm_critical = 0.20 µA/V maximum

In equation (2) the three critical parameters that determine the feasibility of this counter-balance are the ESR, C0 and CL of the Quartz Crystal. To achieve lower gm_critical, all three of these parameters must be simultaneously reduced to ensure proper overall gain margin (GM), while the oscillator amplifier’s transconductance gm is lowered.

As the power optimized silicon expands its domination of the electronic industry, reducing the intrinsic gm, the gm_critical metric is the most important criteria to ensure robust oscillator loop performance.

Abracon’s family of newly released Performance Optimized IoT Crystals have been engineered to specifically address the falling transconductance values across the industry and are compatible with industry’s lowest gm_critical designs. The ABM8W/ABM10W/ABM11W/ABM12W MHz series are guaranteed to operate with gm_critical as low as 3.55mA/V for 50MHz operation. The ABS06W/ABS07W 32.768kHz Tuning Fork Crystals are guaranteed to operate with industry lowest gm_critical value of 0.276µA/V @ 25°C in 2.0×1.2×0.6mm and 0.191µA/V @ 25°C in 3.2×1.5×0.9mm packages.

Plots A and B represent over extended temperature oscillation sustainability matrix of these state-of-the art 32.768kHz solutions ideally suited for energy saving RTC applications.

As transconductance (gm) of most Pierce oscillators dive to unprecedented low levels, quartz crystals have to adapt to maintain sustainable oscillations. Abracon has embraced and overcome this challenge by designing and producing, lower plating load capacitance (CL) and lower equivalent series resistance (ESR) Crystals, while simultaneously lowering the (electrode package) capacitance C0.

Meeting the lowest gm_critical requirements demanded by energy saving MCUs and RF chipsets means guaranteed low CL, ESR and C0. Abracon’s specialized design and processing techniques address this paradigm shift and brings both MHz and kHz Performance Optimized Quartz Crystals to the market. Uniquely engineered for the IoT/Wearable/Consumer Electronics market, these crystals are ready for the future of lower power engineering.

How Critical is Gm_critical?

The trend toward increasingly low power consumption for many MCU and RF chipsets has accelerated with the emergence of the Internet of Things (IoT). This trend pressures IC designers to wring out every bit of energy consumption in circuit design. Oscillator design geared toward low power consumption comes with an inherent side effect; the loop is starved of gain also known as the transconductance (gm). Although not of great disadvantage in the digital design domain, analog circuits can be severely affected by reduced power consumption, particularly the Pierce oscillator.

The Pierce oscillator that drives quartz crystals is one of the most common circuits in the electronics industry. Present in every microcontroller, almost all RF chips, and many other ICs, this feedback loop is the true workhorse of timing in almost every device developed today. As most design engineers employ an analysis of negative resistance with respect to the loop dynamics, some tend to ignore a very significant parameter of the Pierce oscillator design: the gm_critical metric.

gm_critical can be defined as the margin above the transconductance (gm) of the amplifier in the Pierce oscillator. In order to maintain stable oscillation over temperature and across all corners, a margin of 3X to 5X is desirable. For example, if the transconductance (gm) of the amplifier in a Pierce oscillator circuit is 0.5µA/V, the critical transconductance (gm_critical) becomes 2.5µA/V (5X 0.5uA/V). This represents the safety margin built into the design of the oscillator loop. To guaranteed stable oscillation for electronic systems across all factors including temperature, drift, and aging effects, the Pierce oscillator must be matched with a crystal that does not exceed its gm_critical metric.

For any given Pierce oscillator, a crystal must not exceed this parameter. A simple calculation yields whether a crystal will violate this critical metric.

gm_critical = 4 x ESR x (2piF)^2 x (C0 + CL)^2

Abracon’s family of newly released IoT optimized crystals are specifically engineered to address the increasing low power consumption trend which engenders the falling transconductance values designers are facing across the industry. These IoT optimized crystals are compatible with the industry’s lowest gm_critical designs. The ABM8W/ABM10W/ABM11W/ABM12W series are guaranteed to operate with gm_critical as low as 3.55mA/V for 50MHz operation. The ABS06W/ABS07W series are guaranteed to operate with gm_critical of 1.1µA/V or higher. Given that many common MCUs, such as the ST Micro series STM32M4F/STM32F3/STM32F4/STM32L4, which, exhibit gm_critical near 1µA/V at 32.768kHz operation, the criticality of using very low plated crystals is huge. Abracon’s new series of IoT optimized crystals currently offer the lowest load capacitance options in the world.


Datasheets: ABS06W | ABS07W | ABM8W | ABM10W | ABM11W | ABM12W

As the transconductance (gm) of most Pierce oscillators continues to dive towards unprecedented lower levels, the quartz crystal has been forced to not only be of smaller size but also offer very low plating load (CL) and low equivalent series resistance (ESR) parametric options. Meeting the lowest gm_critical requirements demanded by energy saving MCUs and RF chipsets depends on maintaining guaranteed low CL, ESR and C0 parametrics. This requires new non-trivial plating designs on crystals that drop both CL and ESR simultaneously and can still guarantee low specifications over temperature and aging effects. New quartz crystal plating designs are enabling the next generation of Pierce oscillators to run on fumes while being able to maintain oscillation. The electronic industry has one very consistent trend directly dependent on time – as technology gets smaller, demand for reduced power consumption gets higher. Addressing the quartz crystal design requirements, contingent on the industry demands, has become truly critical.

For additional information read the IoT Optimized Crystal White Paper here.

About Abracon, LLC
Founded in 1992, and headquartered in Spicewood, Texas, Abracon is a leading global manufacturer of passive and electromechanical timing, synchronization, power, connectivity and RF solutions. Abracon offers a wide selection of quartz timing crystals and oscillators, MEMS oscillators, real time clocks (RTC), Bluetooth modules, ceramic resonators, SAW filters and resonators, power and RF inductors, transformers, circuit protection components and RF antennas and wireless charging coils. The company is ISO9001-2008 certified with design & application engineering resources in Texas and sales offices in Texas, California, China, Taiwan, Singapore, Scotland, Israel, Hungary, UK, and Germany. Abracon’s products are offered through its global distribution network. For more information about Abracon, visit www.abracon.com.

Luscombe Rocky Mountain announced new Abracon Manufacturer’s Representative in Colorado, Utah, Idaho, Montana, and Wyoming

Austin, TX – Abracon, LLC (Abracon), a leading global manufacturer of passive & electromechanical timing, synchronization, power, connectivity, and RF solutions, announces Luscombe Rocky Mountain as the new manufacturer’s representative with coverage in Colorado, Utah, Idaho, Montana, and Wyoming.

Luscombe RM has been delivering hardware solutions to the Rockies for over 30 years, offering a focused supplier base, industry expertise, and a customer centric approach. Their addition to our team extends valuable guidance with technical acumen to our mutual customers in the region.

“Luscombe RM shares many common values with Abracon,” said Joan Lanoux, North Central Regional Sales Manager with Abracon. “These include a legacy of exceptional technical knowledge, diligence in providing quality solutions, and vast sales experience. I appreciate the genuine enthusiasm they have towards finding the best technical solutions for their customers.”

This partnership assures optimal in-territory support for existing and new customers, accelerating their time to market using Abracon’s broad product solutions and leading edge technologies.

“Luscombe Rocky Mountain is excited to begin our new partnership with Abracon. We look forward to engaging and supporting our customers with Abracon’s IoT optimized portfolio” said Bryan Fluegel, Partner at Luscombe Rocky Mountain.

About Abracon, LLC
Founded in 1992, and headquartered in Spicewood, Texas, Abracon is a leading global manufacturer of passive and electromechanical timing, synchronization, power, connectivity and RF solutions. Abracon offers a wide selection of quartz timing crystals and oscillators, MEMS oscillators, real time clocks (RTC), Bluetooth modules, ceramic resonators, SAW filters and resonators, power and RF inductors, transformers, circuit protection components and RF antennas and wireless charging coils. The company is ISO9001-2008 certified with design & application engineering resources in Texas and sales offices in Texas, California, China, Taiwan, Singapore, Scotland, Israel, Hungary, UK, and Germany. Abracon’s products are offered through its global distribution network. For more information about Abracon, visit www.abracon.com.

Choose the right quartz crystal for your energy saving MCU with THIS simple test

Next generation MCUs and RF chipsets, commonly used in IoT, wearable, and battery powered applications, have presented a problem frequently ignored by many designers across all industries. Lower power consumption requires next generation crystals to optimize for a weaker gain and drive from the Pierce analyzer. The ability to sustain oscillation for a given quartz crystal oscillator design depends heavily on the crystal’s motional parameters, board parasitics, and oscillator circuit characteristics. Yet, as MCUs are upgraded to lower power models, their crystal counterparts have stayed the same. The Pierce oscillator circuit, a closed loop system most commonly integrated into low power ICs, sustains oscillation at an operating point, depending on the crystal plating capacitance (CL), crystal equivalent series resistance (ESR), and oscillator amplifier’s gain and phase response associated with the oscillator’s transconductance (gm). But, how do you know if your crystal’s parameters match your system?

Abracon’s Pierce analyzer system (PAS) was designed by our engineers to help you make the right choice for your industry leading designs. The PAS test validates quartz crystal performance in-circuit and simultaneously measures the crystal, crystal oscillator, and printed circuit board parasitics. Testing in-system accounts for all variables and enables ideal matching of crystal parameters to the board and oscillator in the MCU or RF chipset. This is especially critical for applications using next generation, energy saving technologies requiring optimal gm factors.

Lower CL and lower ESR increase operating gain margin of the loop, ensuring sustained oscillations across all variables including variation in bias, loading, temperature, and over time. Gm_critical is the critical transconductance value that a crystal must achieve in order to remain in the safe zone of loop operation. Crystals that do not meet gm_critical are not well matched to the Pierce oscillator and may cause long term reliability issues associated with startup. Since lower power consumption decreases gm and gm_crictical for a given Pierce oscillator, energy saving designs deployed in IoT and wearables applications are the most at risk of failure. Conducting a PAS test reduces risk and improves the reliability of your system.

“Semiconductor technology strives to wring all the power consumption out of the latest generation of MCUs and RF chipsets,” commented Syed Raza, VP of Engineering with Abracon “the on-chip Pierce oscillator is starved of much needed gain negatively impacting the gm_critical metric. The PAS test is the surest way to diagnose preventable problems.”

“As The Heartbeat of the IoT™, we strive to provide customers with as many tools and services as possible that will take their designs to the next low power plateau. The PAS test service enables validation of a critical subsystem in the design given that nothing will operate if the oscillator fails to run.” commented Juan Conchas, Director of Marketing with Abracon.

The service provides a comprehensive report outlining the functional parameters of the oscillator circuit and recommends changes when necessary. This service is conducted by Abracon and can be ordered through any franchised distributor, with multiple turn-around times from 2-weeks to 4-weeks.

Learn more about the Pierce Oscillator here.
Find more information on the PAS test, here.

Check inventory for the PAS here: PAS-BC1WK/ PAS-BC2WK/ PAS-BC3WK

About Abracon, LLC
Founded in 1992, and headquartered in Spicewood, Texas, Abracon is a leading global manufacturer of passive and electromechanical timing, synchronization, power, connectivity and RF solutions. Abracon offers a wide selection of quartz timing crystals and oscillators, MEMS oscillators, real time clocks (RTC), Bluetooth modules, ceramic resonators, SAW filters and resonators, power and RF inductors, transformers, circuit protection components and RF antennas and wireless charging coils. The company is ISO9001-2008 certified with design & application engineering resources in Texas and sales offices in Texas, California, China, Taiwan, Singapore, Scotland, Israel, Hungary, UK, and Germany. Abracon’s products are offered through its global distribution network. For more information about Abracon, visit www.abracon.com.

Abracon LLC celebrates 25 years of business

Austin, TX – Abracon, LLC (Abracon), a leading global manufacturer of passive & electromechanical timing, synchronization, power, connectivity and RF solutions, celebrated it’s 25th anniversary this past week. What once started as an idea in a Southern California garage has transformed into a life-long mission of quality, customer service, and groundbreaking achievements. Abracon, a company steeped in innovation, recently celebrated 25 years in business this past Saturday. It was a time to recollect humble beginnings and reflect on the past with a clear focus for the future; a future of continued growth for this leading global manufacturer.

Mike White, VP of Sales, stated “We’ve built an extremely solid foundation for our company assembling the best team of sales leaders, reps and channel partners in the industry. Coupled with our excellent internal support staff, this team will continue to achieve new levels of success. I’m honored to be associated with such a great group of people.”

One level of success is the fact that Abracon is growing exponentially. With an active customer base of over 25,000, Abracon continues to reach new heights of service and sales. Recently the Abracon office located in Irvine, California moved to Laguna Hills, California. Also, two facilities doubled in size; the office located in China and the Austin, Texas headquarters. These recent additions will assist in maintaining the highest quality of technical support that Abracon’s customers have come to know.

With no signs of slowing down, Abracon continues to impress the industry where they rank among the highest standard of quality. Abracon’s mission will never be complete. There are always new questions to be asked, new challenges to be accomplished, and new ideas to be thought. Here’s to 25 years. Here’s to the constant pursuit of the power of linking together.

About Abracon, LLC
Founded in 1992, and headquartered in Spicewood, Texas, Abracon is a leading global manufacturer of passive and electromechanical timing, synchronization, power, connectivity and RF solutions. Abracon offers a wide selection of quartz timing crystals and oscillators, MEMS oscillators, real time clocks (RTC), Bluetooth modules, ceramic resonators, SAW filters and resonators, power and RF inductors, transformers, circuit protection components and RF antennas and wireless charging coils. The company is ISO9001-2008 certified with design & application engineering resources in Texas and sales offices in Texas, California, China, Taiwan, Singapore, Scotland, Israel, Hungary, UK, and Germany. Abracon’s products are offered through its global distribution network. For more information about Abracon, visit www.abracon.com.

Abracon and TTI Inc Announce Asia Partnership

Austin, TX – Abracon, LLC (Abracon), a leading global manufacturer of passive & electromechanical timing, synchronization, power, connectivity and RF solutions, announces Asia partnership with TTI, Inc., the leading authorized distributor of interconnect, passive, electromechanical and discrete components. The Asia partnership is an extension of TTI and Abracon’s existing global distribution agreement which was announced by both companies in April 2017.

Michael Calabria, Abracon’s CEO said, “With mutual focus on IP&E and discrete components, the two companies are leaders in the industry and a natural fit. As many users of electronics components rely on the supply chain and go-to-market benefits provided by distributors, Abracon is excited to partner with TTI to support its highly valued customers.”

Anthony Chan, President of TTI Asia Pacific, commented on the addition of Abracon to TTI Asia’s specialized line card, “I am pleased to welcome Abracon to be a TTI business partner in Asia. Abracon offers a wide selection of latest technologies in frequency control, timing and synchronization. I am confident that our partnership in Asia will create additional value to our customers.”

About TTI
TTI, Inc. a Berkshire Hathaway company, is an authorized, specialty distributor of interconnect, passive and electromechanical (IP&E) components and the distributor of choice for industrial and consumer electronics manufacturers worldwide. Broader and deeper inventory, leading-edge products and custom supply chain solutions have established TTI as the leading specialist in electronic component distribution. Globally, the company maintains 1.2 million cubic feet of dedicated warehouse space containing over 850,000 component part numbers. Along with its subsidiaries, Mouser Electronics and Sager Electronics, TTI employs more than 4,700 employees and is represented in over 100 locations throughout North America, Europe and Asia. For more information about TTI, visit www.ttiinc.com.

About Abracon, LLC
Founded in 1992, and headquartered in Spicewood, Texas, Abracon is a leading global manufacturer of passive and electromechanical timing, synchronization, power, connectivity and RF solutions. Abracon offers a wide selection of quartz timing crystals and oscillators, MEMS oscillators, real time clocks (RTC), Bluetooth modules, ceramic resonators, SAW filters and resonators, power and RF inductors, transformers, circuit protection components and RF antennas and wireless charging coils. The company is ISO9001-2008 certified with design & application engineering resources in Texas and sales offices in Texas, California, China, Taiwan, Singapore, Scotland, Israel, Hungary, UK, and Germany. Abracon’s products are offered through its global distribution network. For more information about Abracon, visit www.abracon.com.